Large Depolarization Induces Long Openings of Calcium Channels in Adrenal Chromaffin Cells Voltage-Dependent
نویسندگان
چکیده
Single Ca*+-channel currents in bovine adrenal chromaffin ceils were studied with the patch-clamp technique using Ba2+ as the charge carrier. Depolarizing pulses to voltages less than + 10 mV from holding voltage of -60 mV elicited short openings with a mean life time of less than 1 msec. Depolarization to more positive voltages elicited longer openings with a mean life time of about 3 msec in addition to the short openings similar to those observed at less positive voltages. Following large depolarizing prepulses, 2 types of “tail” openings, one with a mean duration of less than 1 msec and the other with a mean duration of 4 msec, were observed. In the presence of a dihydropyridine BAY K 8644, openings with a mean duration of more than 12 msec were present. Depolarization-induced long openings and BAY K 8644-produced long openings differed in the first latency and open-time properties. The results could be explained in terms of multiple open states of one type of Ca*+ channel. A kinetic model with at least 2 open states is required to explain activation of Ca*+ channels in chromaffin cells.
منابع مشابه
alpha-Latrotoxin alters spontaneous and depolarization-evoked quantal release from rat adrenal chromaffin cells: evidence for multiple modes of action.
alpha-Latrotoxin (alpha-LT) potently enhances both "spontaneous" and "depolarization-evoked" quantal secretion from neurons. Here we have used the patch-clamped rat adrenal chromaffin cell to examine simultaneously the effects of alpha-LT on membrane current or voltage, cytosolic Ca, and membrane capacitance, the latter used as an assay for exocytosis. In chromaffin cells exposed to toxin conce...
متن کاملCaV1.3 as pacemaker channels in adrenal chromaffin cells: specific role on exo- and endocytosis?
Voltage-gated L-type calcium channels (LTCCs) are expressed in adrenal chromaffin cells. Besides shaping the action potential (AP), LTCCs are involved in the excitation-secretion coupling controlling catecholamine release and in Ca (2+) -dependent vesicle retrieval. Of the two LTCCs expressed in chromaffin cells (CaV1.2 and CaV1.3), CaV1.3 possesses the prerequisites for pacemaking spontaneousl...
متن کاملBovine versus rat adrenal chromaffin cells: big differences in BK potassium channel properties.
Both bovine and rat adrenal chromaffin cells have served as pioneering model systems in cellular neurophysiology, including in the study of large conductance calcium- and voltage-dependent K(+) (BK) channels. We now report that while BK channels dominate the outward current profile of both species, specific gating properties vary widely across cell populations, and the distributions of these pr...
متن کاملEvidence for paracrine signaling between macrophages and bovine adrenal chromaffin cell Ca(2+) channels.
The adrenal gland contains resident macrophages, some of which lie adjacent to the catecholamine producing chromaffin cells. Because macrophages release a variety of secretory products, it is possible that paracrine signaling between these two cell types exists. Of particular interest is the potential paracrine modulation of voltage-gated calcium channels (I(Ca)), which are the main calcium inf...
متن کاملCalcium entry through slow-inactivating L-type calcium channels preferentially triggers endocytosis rather than exocytosis in bovine chromaffin cells.
Calcium (Ca(2+))-dependent endocytosis has been linked to preferential Ca(2+) entry through the L-type (α(1D), Ca(V)1.3) of voltage-dependent Ca(2+) channels (VDCCs). Considering that the Ca(2+)-dependent exocytotic release of neurotransmitters is mostly triggered by Ca(2+) entry through N-(α(1B), Ca(V)2.2) or PQ-VDCCs (α(1A), Ca(V)2.1) and that exocytosis and endocytosis are coupled, the suppo...
متن کامل